Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes.

نویسندگان

  • Himchan Cho
  • Su-Hun Jeong
  • Min-Ho Park
  • Young-Hoon Kim
  • Christoph Wolf
  • Chang-Lyoul Lee
  • Jin Hyuck Heo
  • Aditya Sadhanala
  • NoSoung Myoung
  • Seunghyup Yoo
  • Sang Hyuk Im
  • Richard H Friend
  • Tae-Woo Lee
چکیده

Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was <1%. We posited that this low efficiency was a result of high leakage current caused by poor perovskite morphology, high non-radiative recombinati...

متن کامل

Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates.

Violet electroluminescence is rare in both inorganic and organic light-emitting diodes (LEDs). Low-cost and room-temperature solution-processed lead halide perovskites with high-efficiency and color-tunable photoluminescence are promising for LEDs. Here, we report room-temperature color-pure violet LEDs based on a two-dimensional lead halide perovskite material, namely, 2-phenylethylammonium (C...

متن کامل

Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS

In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...

متن کامل

Bright light-emitting diodes based on organometal halide perovskite.

Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on ...

متن کامل

Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method.

The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 350 6265  شماره 

صفحات  -

تاریخ انتشار 2015